Observed attention allocation processes in category learning.

نویسندگان

  • Toshihiko Matsuka
  • James E Corter
چکیده

In two empirical studies of attention allocation during category learning, we investigate the idea that category learners learn to allocate attention optimally across stimulus dimensions. We argue that "optimal" patterns of attention allocation are model or process specific, that human learners do not always optimize attention, and that one reason they fail to do so is that under certain conditions the cost of information retrieval or use may affect the attentional strategy adopted by learners. We empirically investigate these issues using a computer interface incorporating an "information-board" display that collects detailed information on participants' patterns of attention allocation and information search during learning trials. Experiment 1 investigated the effects on attention allocation of distributing perfectly diagnostic features across stimulus dimensions versus within one dimension. The overall pattern of viewing times supported the optimal attention allocation hypothesis, but a more detailed analysis produced evidence of instance- or category-specific attention allocation, a phenomenon not predicted by prominent computational models of category learning. Experiment 2 investigated the strategies adopted by category learners encountering redundant perfectly predictive cues. Here, the majority of participants learned to distribute attention optimally in a cost-benefit sense, allocating attention primarily to only one of the two perfectly predictive dimensions. These results suggest that learners may take situational costs and benefits into account, and they present challenges for computational models of learning that allocate attention by weighting stimulus dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irresistibly Attractive Fruitless Feature Dimensions

Although selective attention allocation has been suggested to be one of the most important processes implemented in the recent computational models of category learning (e.g., Kruschke, 1992), the models’ predictions on attention allocation have been virtually ignored by cognitive modeling researchers. Rather almost all modeling studies had focused solely on the models’ capabilities in reproduc...

متن کامل

Modeling Category Learning with Stochastic Optimization Methods

Many neural network (NN) models of categorization (e.g., ALCOVE) use a gradient algorithm for learning. These methods have been successful in reproducing group learning curves, but tend to underpredict variability in individuallevel data, particularly for attention allocation measures (Matsuka, 2002). In addition, many recent models of categorization have been criticized for not being able to r...

متن کامل

Stochastic Learning Algorithms for Modeling Human Category Learning

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to underpredict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid ...

متن کامل

Cycle Time Optimization of Processes Using an Entropy-Based Learning for Task Allocation

Cycle time optimization could be one of the great challenges in business process management. Although there is much research on this subject, task similarities have been paid little attention. In this paper, a new approach is proposed to optimize cycle time by minimizing entropy of work lists in resource allocation while keeping workloads balanced. The idea of the entropy of work lists comes fr...

متن کامل

Time Course of Visual Attention in Statistical Learning of Words and Categories

Previous research indicates that adult learners are able to use co-occurrence information to learn word-to-object mappings and form object categories simultaneously. The current eyetracking study investigated the dynamics of attention allocation during concurrent statistical learning of words and categories. The results showed that the participants’ learning performance was associated with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quarterly journal of experimental psychology

دوره 61 7  شماره 

صفحات  -

تاریخ انتشار 2008